Discovery, optimization and validation of an optimal DNA-binding sequence for the Six1 homeodomain transcription factor

نویسندگان

  • Yubing Liu
  • Soumyadeep Nandi
  • André Martel
  • Alen Antoun
  • Ilya Ioshikhes
  • Alexandre Blais
چکیده

The Six1 transcription factor is a homeodomain protein involved in controlling gene expression during embryonic development. Six1 establishes gene expression profiles that enable skeletal myogenesis and nephrogenesis, among others. While several homeodomain factors have been extensively characterized with regards to their DNA-binding properties, relatively little is known of the properties of Six1. We have used the genomic binding profile of Six1 during the myogenic differentiation of myoblasts to obtain a better understanding of its preferences for recognizing certain DNA sequences. DNA sequence analyses on our genomic binding dataset, combined with biochemical characterization using binding assays, reveal that Six1 has a much broader DNA-binding sequence spectrum than had been previously determined. Moreover, using a position weight matrix optimization algorithm, we generated a highly sensitive and specific matrix that can be used to predict novel Six1-binding sites with highest accuracy. Furthermore, our results support the idea of a mode of DNA recognition by this factor where Six1 itself is sufficient for sequence discrimination, and where Six1 domains outside of its homeodomain contribute to binding site selection. Together, our results provide new light on the properties of this important transcription factor, and will enable more accurate modeling of Six1 function in bioinformatic studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bio014068 1614..1624

Skeletal myogenesis in vertebrates is initiated at different sites of skeletal muscle formation during development, by activation of specific control elements of the myogenic regulatory genes. In the mouse embryo, Myf5 is the first myogenic determination gene to be expressed and its spatiotemporal regulation requires multiple enhancer sequences, extending over 120 kb upstream of the Mrf4Myf5 lo...

متن کامل

Sequence features of DNA binding sites reveal structural class of associated transcription factor

MOTIVATION A key goal in molecular biology is to understand the mechanisms by which a cell regulates the transcription of its genes. One important aspect of this transcriptional regulation is the binding of transcription factors (TFs) to their specific cis-regulatory counterparts on the DNA. TFs recognize and bind their DNA counterparts according to the structure of their DNA-binding domains (e...

متن کامل

Inferring protein-DNA dependencies using motif alignments and mutual information

MOTIVATION Mutual information can be used to explore covarying positions in biological sequences. In the past, it has been successfully used to infer RNA secondary structure conformations from multiple sequence alignments. In this study, we show that the same principles allow the discovery of transcription factor amino acids that are coevolving with nucleotides in their DNA-binding targets. R...

متن کامل

Recognition models to predict DNA-binding specificities of homeodomain proteins

MOTIVATION Recognition models for protein-DNA interactions, which allow the prediction of specificity for a DNA-binding domain based only on its sequence or the alteration of specificity through rational design, have long been a goal of computational biology. There has been some progress in constructing useful models, especially for C(2)H(2) zinc finger proteins, but it remains a challenging pr...

متن کامل

Covariation between homeodomain transcription factors and the shape of their DNA binding sites

Protein-DNA recognition is a critical component of gene regulatory processes but the underlying molecular mechanisms are not yet completely understood. Whereas the DNA binding preferences of transcription factors (TFs) are commonly described using nucleotide sequences, the 3D DNA structure is recognized by proteins and is crucial for achieving binding specificity. However, the ability to analyz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012